
Simultaneous dense coding

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys. A: Math. Theor. 43 055301

(http://iopscience.iop.org/1751-8121/43/5/055301)

Download details:

IP Address: 171.66.16.157

The article was downloaded on 03/06/2010 at 08:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/43/5
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 43 (2010) 055301 (10pp) doi:10.1088/1751-8113/43/5/055301

Simultaneous dense coding

Haozhen Situ1 and Daowen Qiu1,2

1 Department of Computer Science, Zhongshan University, Guangzhou 510275, People’s
Republic of China
2 SQIG–Instituto de Telecomunicações, IST, TULisbon, Av. Rovisco Pais 1049-001, Lisbon,
Portugal

E-mail: issqdw@mail.sysu.edu.cn

Received 28 September 2009, in final form 18 November 2009
Published 12 January 2010
Online at stacks.iop.org/JPhysA/43/055301

Abstract
We present a dense coding scheme between one sender and two receivers,
which guarantees that the receivers simultaneously achieve their respective
information. In our scheme, the sender first performs a locking operation to
entangle the particles from two independent quantum entanglement channels,
so that the receivers cannot achieve their information unless they collaborate
to perform the unlocking operation. We also show that the quantum Fourier
transform can act as the locking operator both in simultaneous dense coding and
teleportation. Finally we compare simultaneous dense coding with quantum
secret sharing of classical messages.

PACS numbers: 03.67.-a, 03.67.Hk

1. Introduction

Quantum entanglement [1] is the key resource of quantum information theory [2, 3], especially
in quantum communication [4]. Sharing an entangled quantum state between a sender and
a receiver makes it possible to perform quantum teleportation [5] and quantum dense coding
[6]. Quantum teleportation is the process of transmitting an unknown quantum state by
using shared entanglement and sending classical information; quantum dense coding is the
process of transmitting two bits of classical information by sending part of an entangled
state. Teleportation and dense coding are closely related [7, 8] and have been extensively
studied in various ways. For example, teleportation and dense coding that use the non-
maximally entangled quantum channel have been examined [8–17]; multipartite entangled
states have also been considered as the quantum channel [18–26]; another generalization is to
perform these two communication tasks under the control of a third party, so-called controlled
teleportation and dense coding [27–32].

Recently, a simultaneous quantum state teleportation scheme was proposed by Wang et al
[33], the aim of which is for all the receivers to simultaneously obtain their respective quantum
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states from Alice (the sender). In their scheme, Alice first performs a locking operation to
entangle the particles from two independent quantum entanglement channels, and therefore
the receivers cannot restore their quantum states separately before performing the unlocking
operation together. A natural question is whether this idea of locking the entanglement
channels adapts for dense coding. The main purpose of this paper is to show that such a locking
operator for dense coding really exists. As a result, we propose three simultaneous dense
coding protocols which guarantee that the receivers simultaneously achieve their respective
information.

The remainder of the paper is organized as follows. In section 2, we introduce three
simultaneous dense coding protocols using different entanglement channels. In section 3, we
show that the quantum Fourier transform can alternatively be used as the locking operator
in simultaneous teleportation. Section 4 contains a comparison between simultaneous dense
coding and quantum secret sharing of classical messages. A brief conclusion follows in
section 5.

2. Protocols for simultaneous dense coding

Suppose that Alice is the sender, Bob and Charlie are the receivers. Alice intends to send two
bits (b1, b2) to Bob and another two bits (c1, c2) to Charlie under the condition that Bob and
Charlie must collaborate to simultaneously find out what she sends.

In the following three subsections, we propose three protocols using the Bell state, GHZ
state and W state as the entanglement channels, respectively. The idea of these protocols
is to perform the quantum Fourier transform on Alice’s qubits before sending them to Bob
and Charlie. After receiving Alice’s qubits, Bob and Charlie’s local states are independent
of (b1, b2) and (c1, c2) so that they know nothing about the encoded bits. Only after
performing the inverse quantum Fourier transform together, they can achieve (b1, b2) and
(c1, c2), respectively.

2.1. Protocol 1: using the Bell state

Initially, Alice, Bob and Charlie share two Einstein–Podolsky–Rosen (EPR) pairs [34]
1√
2
(|00〉 + |11〉)A1B and 1√

2
(|00〉 + |11〉)A2C , where qubits A1A2 belong to Alice, qubits B

and C belong to Bob and Charlie, respectively. The initial quantum state of the composite
system is

|ψ(0)〉 = 1√
2
(|00〉 + |11〉)A1B ⊗ 1√

2
(|00〉 + |11〉)A2C. (1)

The protocol consists of four steps.

(1) Alice performs unitary transforms U(b1b2) on qubits A1 and U(c1c2) on A2 to encode
her bits, like the original dense coding scheme [6]. After that, the state of the composite
system becomes

|ψ(1)〉 = UA1(b1b2) ⊗ UA2(c1c2)|ψ(0)〉 = |φ(b1b2)〉A1B ⊗ |φ(c1c2)〉A2C, (2)

where

U(jk) = σ k
z σ j

x , |φ(xy)〉 = 1√
2
(|0x〉 + (−1)y |1x〉). (3)

2
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(2) Alice performs the quantum Fourier transform

QFT = 1

2

⎛
⎜⎜⎝

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞
⎟⎟⎠ (4)

on qubits A1A2 to lock the entanglement channels, and then sends A1 to Bob and A2 to
Charlie. The state of the composite system becomes

|ψ(2)〉 = QFTA1A2
[|φ(b1b2)〉A1B ⊗ |φ(c1c2)〉A2C]. (5)

(3) Bob and Charlie collaborate to perform QFT† on qubits A1A2. The state of the composite
system becomes

|ψ(3)〉 = QFT†
A1A2

|ψ(2)〉 = |φ(b1b2)〉A1B |φ(c1c2)〉A2C. (6)

(4) Bob and Charlie perform the Bell state measurement on qubits A1B and A2C, respectively
to achieve (b1, b2) and (c1, c2), like the original dense coding scheme [6].

The following theorem demonstrates that neither Bob nor Charlie alone can distinguish
his two-qubit quantum state (i.e. ρA1B, ρA2C) before step 3. Therefore, they cannot learn the
encoded bits from their quantum states unless they collaborate.

Theorem 1. For each b1, b2, c1, c2 ∈ {0, 1}, ρA1B = ρA2C = I/4, where ρA1B and ρA2C are
the reduced density matrices in subsystems A1B and A2C after step 2 (but before step 3).

Proof. After step 2, the state of the composite system becomes

|ψ(2)〉 = QFTA1A2

[
1√
2
(|0b1〉 + (−1)b2 |1b1〉)A1B ⊗ 1√

2
(|0c1〉 + (−1)c2 |1c1〉)A2C

]

= 1

2
QFTA1A2

(|00〉 ⊗ |b1c1〉 + (−1)c2 |01〉 ⊗ |b1c1〉

+ (−1)b2 |10〉 ⊗ |b1c1〉 + (−1)b2+c2 |11〉 ⊗ |b1c1〉)A1A2BC

= 1

4
[(|00〉 + |01〉 + |10〉 + |11〉) ⊗ |b1c1〉 + (−1)c2(|00〉 + i|01〉 − |10〉 − i|11〉)

⊗ |b1c1〉 + (−1)b2(|00〉 − |01〉 + |10〉 − |11〉) ⊗ |b1c1〉
+ (−1)b2+c2(|00〉 − i|01〉 − |10〉 + i|11〉) ⊗ |b1c1〉]A1A2BC. (7)

The reduced density matrix in subsystem A1B is

ρA1B =A2C 〈0c1|ψ(2)〉〈ψ(2)|0c1〉A2C +A2C 〈0c1|ψ(2)〉〈ψ(2)|0c1〉A2C

+A2C 〈1c1|ψ(2)〉〈ψ(2)|1c1〉A2C +A2C 〈1c1|ψ(2)〉〈ψ(2)|1c1〉A2C

= 1
4 (|0b1〉〈0b1| + |0b1〉〈0b1| + |1b1〉〈1b1| + |1b1〉〈1b1|)

= I/4. (8)

Similarly, the reduced density matrix in subsystem A2C is also I/4. �

3
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2.2. Protocol 2: using the GHZ state

Initially, Alice, Bob and Charlie share two Greenberger–Horne–Zeilinger (GHZ) states [35]
1√
2
(|000〉 + |111〉)A1B1B2 and 1√

2
(|000〉 + |111〉)A2C1C2 , where qubits A1A2 belong to Alice,

qubits B1B2 and C1C2 belong to Bob and Charlie, respectively. The protocol consists of four
steps.

(1) Alice performs unitary transforms U(b1b2) on qubits A1 and U(c1c2) on A2 to encode
her bits. After that, the state of the composite system becomes

|ψ(1)〉 = |GHZ(b1b2)〉A1B1B2 ⊗ |GHZ(c1c2)〉A2C1C2 , (9)

where

|GHZ(xy)〉 = 1√
2
(|0xx〉 + (−1)y |1xx〉). (10)

(2) Alice performs the quantum Fourier transform on qubits A1A2, and then sends A1 to Bob
and A2 to Charlie.

(3) Bob and Charlie collaborate to perform the inverse quantum Fourier transform on qubits
A1A2.

(4) Bob and Charlie make the von Neumann measurement using the orthogonal states
{|GHZ(xy)〉}xy on qubits A1B1B2 and A2C1C2 respectively to achieve (b1, b2) and
(c1, c2).

The following theorem demonstrates that neither Bob nor Charlie alone can achieve the
encoded bits unless they collaborate.

Theorem 2. ρA1B1B2 and ρA2C1C2 are independent of b1, b2, c1, c2, where ρA1B1B2 and ρA2C1C2

are the reduced density matrices in subsystems A1B1B2 and A2C1C2 after step 2 (but before
step 3), respectively.

Proof. The proof is similar to that of theorem 1. We only point out that ρA1B1B2 = ρA2C1C2 =
1
4 (|000〉〈000| + |011〉〈011| + |100〉〈100| + |111〉〈111|). �

2.3. Protocol 3: using the W state

Initially, Alice, Bob and Charlie share two W states [25, 36] 1
2 (|010〉 + |001〉 +

√
2|100〉)A1B1B2

and 1
2 (|010〉 + |001〉 +

√
2|100〉)A2C1C2 , where qubits A1A2 belong to Alice, qubits B1B2 and

C1C2 belong to Bob and Charlie, respectively. The protocol consists of four steps.

(1) Alice performs unitary transforms U(b1b2) on qubits A1 and U(c1c2) on A2 to encode
her bits. After that, the state of the composite system becomes

|ψ(1)〉 = |W(b1b2)〉A1B1B2 ⊗ |W(c1c2)〉A2C1C2 , (11)

where

|W(xy)〉 = 1
2 (|x10〉 + |x01〉 + (−1)y

√
2|x00〉). (12)

(2) Alice performs the quantum Fourier transform on qubits A1A2, and then sends A1 to Bob
and A2 to Charlie.

(3) Bob and Charlie collaborate to perform the inverse quantum Fourier transform on qubits
A1A2.

(4) Bob and Charlie make the von Neumann measurement using the orthogonal states
{|W(xy)〉}xy on qubits A1B1B2 and A2C1C2 respectively to achieve (b1, b2) and (c1, c2).

4
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The following theorem demonstrates that neither Bob nor Charlie alone can achieve the
encoded bits unless they collaborate.

Theorem 3. ρA1B1B2 and ρA2C1C2 are independent of b1, b2, c1, c2, where ρA1B1B2 and ρA2C1C2

are the reduced density matrices in subsystems A1B1B2 and A2C1C2 after step 2 (but before
step 3), respectively.

Proof. The proof is similar to that of theorem 1. We only point out that

ρA1B1B2 = ρA2C1C2 = 1
8 [2|000〉〈000| + |001〉(〈001| + 〈010|) + |010〉(〈001| + 〈010|)

+ 2|100〉〈100| + |101〉(〈101| + 〈110|) + |110〉(〈101| + 〈110|)]. (13)

�

2.4. Locking operator

The locking operator used in simultaneous teleportation [33] is

U(LOCK)12 = H1CNOT12, (14)

where H is the Hadamard transform, CNOT is the controlled-NOT gate, qubit 1 is the control
qubit and qubit 2 is the target qubit.

We note that U(LOCK) is not suitable for simultaneous dense coding. To explain
the reason, we calculate the reduced density matrix in subsystem A1B after U(LOCK) is
performed when Bell states are used as the entanglement channels. The situations of using
GHZ and W states as entanglement channels are similar.

After a calculation similar to that in theorem 1, we have

ρA1B = 1
4 (|0b1〉〈0b1| + |0b1〉〈1b1| + |0b1〉〈0b1| − |0b1〉〈1b1|
+ |1b1〉〈0b1| + |1b1〉〈1b1| − |1b1〉〈0b1| + |1b1〉〈1b1|). (15)

Since ρA1B is only dependent on b1, we denote it as ρA1B(b1). We have

ρA1B(0) = 1

4

⎛
⎜⎜⎝

1 0 1 0
0 1 0 −1
1 0 1 0
0 −1 0 1

⎞
⎟⎟⎠ and ρA1B(1) = 1

4

⎛
⎜⎜⎝

1 0 −1 0
0 1 0 1

−1 0 1 0
0 1 0 1

⎞
⎟⎟⎠ .

After step 2, Bob can distinguish these two states and achieve b1 by a POVM measurement
on qubits A1B because ρA1B(0)ρA1B(1) = 0. Similarly, Charlie can also achieve c2 by a POVM
measurement on qubits A2C. Each receiver can achieve 1 bit of his information before they
agree to simultaneously find out what Alice sends. The aim of simultaneous dense coding is
not achieved when U(LOCK) is used instead of the quantum Fourier transform.

3. Simultaneous teleportation using quantum Fourier transform

In this section, we show that the quantum Fourier transform can alternatively be used as the
locking operator in simultaneous teleportation. Let us begin with a brief review of simultaneous
teleportation between one sender and two receivers [33]. Suppose that Alice intends to teleport
|ϕ1〉T1 = α1|0〉T1 +β1|1〉T1 to Bob and |ϕ2〉T2 = α2|0〉T2 +β2|1〉T2 to Charlie under the condition
that Bob and Charlie must collaborate to simultaneously obtain their respective quantum states.
Initially, Alice, Bob and Charlie share two EPR pairs 1√

2
(|00〉+|11〉)A1B and 1√

2
(|00〉+|11〉)A2C ,

5
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where qubits A1A2 belong to Alice, qubits B and C belong to Bob and Charlie, respectively.
Then the initial quantum state of the composite system is

|χ(0)〉 = |ϕ1〉T1 ⊗ |ϕ2〉T2 ⊗ 1√
2
(|00〉 + |11〉)A1B ⊗ 1√

2
(|00〉 + |11〉)A2C. (16)

The scheme of simultaneous teleportation consists of five steps.

(1) Alice performs the unitary transform U(LOCK) on qubits A1A2 to lock the entanglement
channels. After that, the state of the composite system becomes

|χ(1)〉 = |ϕ1〉T1 ⊗ |ϕ2〉T2 ⊗ U(LOCK)A1A2

×
[

1√
2
(|00〉 + |11〉)A1B

1√
2
(|00〉 + |11〉)A2C

]
. (17)

(2) Alice performs the Bell state measurement on qubits A1T1 and A2T2, like the original
teleportation scheme [5]. It is easy to prove that |χ(1)〉 can be written as

|χ(1)〉 = 1

4

1∑
x1=0

1∑
y1=0

1∑
x2=0

1∑
y2=0

|φ(x1y1)〉A1T1 ⊗ |φ(x2y2)〉A2T2

⊗ U(LOCK)
†
BC[UB(x1y1)|ϕ1〉B ⊗ UC(x2y2)|ϕ2〉C]. (18)

If the measurement results are |φ(x1y1)〉A1T1 and |φ(x2y2)〉A2T2 , the state of qubits BC

collapses into

|χ(2)〉 = U(LOCK)
†
BC[UB(x1y1)|ϕ1〉B ⊗ UC(x2y2)|ϕ2〉C]. (19)

(3) Alice sends the measurement results (x1, y1) to Bob and (x2, y2) to Charlie.
(4) Bob and Charlie collaborate to perform U(LOCK) on qubits BC, and then the state of

BC becomes

|χ(3)〉 = U(LOCK)BC |χ(2)〉 = UB(x1y1)|ϕ1〉B ⊗ UC(x2y2)|ϕ2〉C. (20)

(5) Bob and Charlie perform U(x1y1)
† and U(x2y2)

† on qubits B and C to obtain |ϕ1〉 and
|ϕ2〉, respectively, like the original teleportation scheme [5].

In the above simultaneous teleportation scheme, U(LOCK) is used to lock the
entanglement channels. In section 2.4, we have shown that U(LOCK) is not suitable for
simultaneous dense coding, but we find that the quantum Fourier transform can alternatively
be used as the locking operator in simultaneous teleportation.

Let us suppose that Alice is the sender, Bobi (1 � i � N) are the receivers. Alice intends
to send the unknown quantum states |ϕi〉Ti

= (αi |0〉+βi |1〉)Ti
to Bobi under the condition that

all the receivers must collaborate to simultaneously obtain (αi |0〉 + βi |1〉)Ti
. Initially, Alice

and each receiver share an EPR pair 1√
2
(|00〉 + |11〉)AiBi

. The initial quantum state of the
composite system is

|χ ′(0)〉 = 1√
2N

N⊗
i=1

|ϕi〉Ti

N⊗
i=1

(|00〉 + |11〉)AiBi

= 1√
2N

N⊗
i=1

|ϕi〉Ti

2N−1∑
m=0

|m〉A1...AN
|m〉B1...BN

. (21)

6
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The scheme of simultaneous teleportation consists of five steps.

(1) Alice performs the quantum Fourier transform |j 〉 → 1√
2N

∑2N −1
k=0 e2π ijk/2N |k〉 on qubits

A1 . . . AN to lock the entanglement channels. After that, the state of the composite system
becomes

|χ ′(1)〉 = QFTA1...AN |χ ′(0)〉

= 1

2N

N⊗
i=1

|ϕi〉Ti

2N−1∑
m=0

2N−1∑
k=0

ωmk|k〉A1...AN
|m〉B1...BN

= 1

2N

2N −1∑
k=0

2N −1∑
m=0

ωmk

N⊗
i=1

(|ki〉Ai
|ϕi〉Ti

)|m〉B1...BN
, (22)

where ki is the ith bit of k, ω = e2π i/2N

.
(2) Alice performs the Bell state measurement on each pair of AiTi .

N⊗
i=1

AiTi
〈φ(xiyi)|χ ′(1)〉

= 1

2N

2N −1∑
k=0

N⊗
i=1

AiTi
(〈0xi | + (−1)yi 〈1xi |)(αi |ki0〉 + βi |ki1〉)AiTi

1√
2N

2N −1∑
m=0

ωmk|m〉B1...BN

= 1

2N

2N −1∑
k=0

N∏
i=1

[δki0(δxi0αi + δxi1βi) + δki1(−1)yi (δxi1αi + δxi0βi)]QFTB1...BN
|k〉B1...BN

= 1

2N
QFTB1...BN

N⊗
i=1

[(δxi0αi + δxi1βi)|0〉 + (−1)yi (δxi0βi + δxi1αi)|1〉]Bi

= 1

2N
QFTB1...BN

N⊗
i=1

U(xiyi)(αi |0〉 + βi |1〉)Bi
. (23)

If the measurement result of qubits AiTi is |φ(xiyi)〉, the state of qubits B1 . . . BN collapses
into

|χ ′(2)〉 = QFTB1...BN

N⊗
i=1

U(xiyi)|ϕi〉Bi
. (24)

(3) Alice sends the measurement result (xi, yi) to each Bobi .
(4) All the receivers collaborate to perform QFT† on qubits B1 . . . BN , the state of B1 . . . BN

becomes

|χ ′(3)〉 = QFT†
B1...BN

|χ ′(2)〉 =
N⊗

i=1

U(xiyi)|ϕi〉Bi
. (25)

(5) Each Bobi performs U(xiyi)
† on qubit Bi to obtain |ϕi〉.

4. Comparison with quantum secret sharing of classical messages

Quantum secret sharing (QSS), the implementation of the secret sharing problem using
quantum information techniques, has been an active area of research in quantum information
theory [37–41]. The basic idea of QSS in the simplest case is that Alice wants to distribute a

7
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secret (classical message or quantum state) to Bob and Charlie, in such a way that it can be
revealed if and only if they collaborate [37]. In a more general case, a secret is distributed
among n participants in a way that any k of those participants can reveal the secret, but any
set of k − 1 or fewer participants contains absolutely no information about the secret. This
is called a (k, n) threshold scheme [40]. Not only classical messages but also quantum states
can be shared in QSS; hence, two directions have been followed: quantum secret sharing
of classical messages (QSSCM) [37–39] and quantum state sharing (QSTS) [40, 41]. In
QSSCM, the shared secret is classical information, while in QSTS, the shared secret is an
arbitrary unknown quantum state.

Our simultaneous dense coding scheme can be regarded as a (2, 2) threshold QSSCM
scheme. Suppose that Alice wants Bob and Charlie to share her N-bit secret. In the secret
distributing stage, she first divides the secret into two equal parts, and then sends part 1 to Bob
and part 2 to Charlie by running steps 1 and 2 of the simultaneous dense coding protocol N/4
times. In the secret revealing stage, Bob and Charlie run steps 3 and 4 of the simultaneous
dense coding protocol to achieve part 1 and part 2, respectively. If they put part 1 and part 2
together, the whole secret is revealed. In order to share N bits, N/2 EPR pairs are used and
N/2 qubits are communicated.

From another point of view, if Alice has two different secrets, one for Bob and another
for Charlie, she can utilize simultaneous dense coding to guarantee that Bob and Charlie
simultaneously reveal their respective secrets. Bob does not know Charlie’s secret and vice
versa. Obviously this ‘simultaneous secret revealing’ task is different from secret sharing. For
example, Alice wants Bob and Charlie to simultaneously carry out two confidential commercial
activities under the condition that the sensitive information of each activity is only revealed to
whoever is in charge of that activity.

To sum up, our simultaneous dense coding scheme has two features which are not
necessarily acquired in QSSCM schemes:

(1) Each receiver can only reveal his or her part of the secret, which provides a higher level
of security.

(2) The receivers can reveal the secret only by the joint unlocking quantum operation, which
requires either a quantum channel, shared entanglement, or direct interaction between
them. Classical communication does not help the receivers to reveal the secret.

The QSSCM scheme in [37] first established a shared key between Bob and Charlie by
measuring a GHZ state and then Alice used this shared key to encode the secret in the secret
distributing stage. In the secret revealing stage, Bob and Charlie could obtain the key by
classical communication and use it to reveal the secret. In this scheme, there is no way to
ensure that each participant can only reveal a designated part of the secret. Thus, the above
two features are not acquired in this QSSCM scheme.

5. Conclusion

In summary, we have proposed a simultaneous dense coding scheme between one sender
and two receivers, the aim of which is for the receivers to simultaneously achieve their
respective information. This scheme may be relevant and useful for improvement of some
models or tasks of quantum communication. We have also shown that the quantum Fourier
transform, which has been implemented using cavity quantum electrodynamics (QED) [42],
nuclear magnetic resonance (NMR) [43–47] and coupled semiconductor double quantum dot
(DQD) molecules [48], can act as the locking operator both in simultaneous dense coding

8
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and teleportation. Finally we have compared simultaneous dense coding with quantum secret
sharing of classical messages.
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[37] Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[38] Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162

9

http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1038/nphoton.2007.22
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.69.2881
http://dx.doi.org/10.1088/0305-4470/34/35/332
http://dx.doi.org/10.1016/S0375-9601(00)00764-7
http://dx.doi.org/10.1103/PhysRevA.61.034301
http://dx.doi.org/10.1016/S0375-9601(02)01383-X
http://dx.doi.org/10.1088/1464-4266/6/8/034
http://dx.doi.org/10.1103/PhysRevA.73.042309
http://dx.doi.org/10.1080/09500349514551091
http://dx.doi.org/10.1103/PhysRevA.54.1869
http://dx.doi.org/10.1103/PhysRevA.63.022302
http://dx.doi.org/10.1103/PhysRevA.71.012311
http://dx.doi.org/10.1103/PhysRevA.72.012329
http://dx.doi.org/10.1023/A:1007875331710
http://dx.doi.org/10.1134/1.1334979
http://dx.doi.org/10.1016/S0375-9601(03)00906-X
http://dx.doi.org/10.1088/1367-2630/5/1/136
http://dx.doi.org/10.1103/PhysRevA.57.822
http://dx.doi.org/10.1103/PhysRevA.65.022304
http://dx.doi.org/10.1142/S0219749906001888
http://dx.doi.org/10.1103/PhysRevA.74.062320
http://dx.doi.org/10.1088/1751-8113/40/35/010
http://dx.doi.org/10.1103/PhysRevA.58.4394
http://dx.doi.org/10.1103/PhysRevA.72.022338
http://dx.doi.org/10.1103/PhysRevA.75.052306
http://dx.doi.org/10.1142/S0219749909005419
http://dx.doi.org/10.1103/PhysRevA.63.054301
http://dx.doi.org/10.1142/S0219749909004670
http://dx.doi.org/10.1142/S0219749908003384
http://dx.doi.org/10.1103/PhysRevA.62.062314
http://dx.doi.org/10.1103/PhysRevA.59.1829
http://dx.doi.org/10.1103/PhysRevA.59.162


J. Phys. A: Math. Theor. 43 (2010) 055301 H Situ and D Qiu

[39] Tittel W, Zbinden H and Gisin N 2001 Phys. Rev. A 63 042301
[40] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
[41] Lance A M, Symul T, Bowen W P, Sanders B C and Lam P K 2004 Phys. Rev. Lett. 92 177903
[42] Scully M O and Zubairy M S 2002 Phys. Rev. A 65 052324
[43] Vandersypen L M K, Steffen M, Breyta G, Yannoni C S, Cleve R and Chuang I L 2000 Phys. Rev. Lett. 85 5452
[44] Fu L, Luo J, Xiao L and Zeng X 2000 Appl. Magn. Reson. 19 153
[45] Weinstein Y S, Pravia M A, Fortunato E M, Lloyd S and Cory D G 2001 Phys. Rev. Lett. 86 1889
[46] Vandersypen L M K, Steffen M, Breyta G, Yannoni C S, Sherwood M H and Chuang I L 2001 Nature 414 883
[47] Dorai K and Suter D 2005 Int. J. Quantum Inf. 3 413
[48] Dong P, Yang M and Cao Z L 2008 Phys. Lett. A 373 30

10

http://dx.doi.org/10.1103/PhysRevA.63.042301
http://dx.doi.org/10.1103/PhysRevLett.83.648
http://dx.doi.org/10.1103/PhysRevLett.92.177903
http://dx.doi.org/10.1103/PhysRevA.65.052324
http://dx.doi.org/10.1103/PhysRevLett.85.5452
http://dx.doi.org/10.1007/BF03162270
http://dx.doi.org/10.1103/PhysRevLett.86.1889
http://dx.doi.org/10.1038/414883a
http://dx.doi.org/10.1142/S0219749905000967
http://dx.doi.org/10.1016/j.physleta.2008.11.005

	1. Introduction
	2. Protocols for simultaneous dense coding
	2.1. Protocol 1: using the Bell state
	2.2. Protocol 2: using the GHZ state
	2.3. Protocol 3: using the W state
	2.4. Locking operator

	3. Simultaneous teleportation using quantum Fourier transform
	4. Comparison with quantum secret sharing of classical messages
	5. Conclusion
	Acknowledgments
	References

